

CALPROLAB. Calprotectin ELISA (ALP)

1 INTENDED USE

The **CALPROLAB® Calprotectin ELISA (ALP)** is a quantitative method for the determination of Calprotectin in stool samples and can thus be used as an aid in identifying organic disease of the small intestine, large bowel, or the stomach in patients, to determine the disease activity and monitor the response to treatment in patients with ulcerative colitis or Crohn's disease.

The CALPROLAB® Calprotectin ELISA (ALP) has been validated for stool samples.

The test is for in vitro diagnostic use.

2 BACKGROUND

Various types of organic diseases in the gastrointestinal tract may cause damage to the intestinal epithelial lining (mucosa layer). Such damage may vary from increased permeability of the mucosa to inflammation and ulcerations. The bowel content is rich in bacteria and other microorganisms releasing substances which may be toxic or chemotactic, i.e. they stimulate leukocytes, in particular polymorphonuclear neutrophilic granulocytes (PMN), to migrate into the gut lumen where they release their contents including antimicrobial substances like Calprotectin. This protein constitutes about 60% of total proteins in the cytoplasm of PMNs² and can be reliably estimated in faecal samples stored for up to seven days at ambient temperature ³.

Calprotectin is a 36 kilodalton calcium and zinc-binding protein ⁴⁾, produced by PMNs, monocytes and squamous epithelial cells (except those in normal skin) ^{5,6)}. After binding of calcium, it can resist degradation by leukocytic and microbial enzymes ^{3,7)}. By competing with different enzymes for limited, local amounts of zinc, Calprotectin can inhibit many zinc-dependent enzymes ⁸⁾ and thereby kill microorganisms or animal and human cells in culture ^{9,10)}. Different types of disease, for instance bacterial infections, rheumatoid arthritis and cancer, lead to activation of PMNs and increased levels of Calprotectin in plasma, cerebrospinal fluid, synovial fluid, crevicular fluid, urine or other human materials ¹⁾.

It is an essential property of Calprotectin that the concentration in faeces correlates with the number of PMNs migrating into the gut lumen ¹¹), and that it can be detected reliably even in small (less than one gram) random stool samples ^{3,12}). Furthermore, organic diseases of the bowel give a strong Calprotectin signal, i.e. elevations are regularly five to several thousand times the upper reference in healthy individuals ^{3,13,14,15}), indicating intestinal inflammation.

Inflammatory bowel diseases (IBD), i.e. ulcerative colitis and Crohn's disease, may appear from early childhood to late adulthood and the diagnosis is often delayed due to vague symptoms or reluctance to perform endoscopy and biopsy. The **CALPROLAB®** Calprotectin ELISA (ALP) can contribute to an earlier diagnosis of IBD since the test is usually positive in active IBD.

Functional disorders like irritable bowel syndrome (IBS) do not give increased faecal Calprotectin concentrations, but organic abdominal disorders like IBD do. Patients with organic and functional abdominal disorders may have similar symptoms, and clinical examination alone may not be sufficient to give a specific diagnosis. Further diagnostic procedures are complex, expensive and may expose the patient to pain and other risks. A test for faecal Calprotectin is a simple, non-invasive, inexpensive and objective method that can help selecting patients for additional examination like endoscopy. Abdominal symptoms are very common both in children and adults and a negative result as measured by the **CALPROLAB® Calprotectin ELISA (ALP)** can with high probability rule out inflammatory bowel disorders ¹³.

Mucosal healing is the optimal goal for IBD treatment, and a test for faecal Calprotectin can tell when this has been achieved. Many IBD patients in clinical remission with normal C-reactive protein (CRP) levels still have on-going inflammation ¹⁶, reflected by increased faecal Calprotectin. Such patients have increased risk of relapse within a few months ¹⁷. If mucosal healing can be achieved, the risk of relapse and need for major abdominal surgery will be reduced ^{18,19}. Normalisation of Calprotectin levels means

that mucosal healing has been achieved ²⁰. The risk and severity of side effects to treatment should be balanced against the risk of continued inflammation, severe clinical relapse and complications.

The importance of achieving mucosal healing has been the focus of many scientific reviews ²¹⁻²⁹ and articles ³⁰⁻³⁵.

3 PRINCIPLE OF THE TEST

The **CALPROLAB®** Calprotectin ELISA (ALP) is based upon preparation of an extract of faeces using our patented Faecal Extraction Buffer. The level of Calprotectin is determined by testing the extract in an enzyme-linked immunoassay (ELISA) specific for Calprotectin.

In the ELISA, samples and standards are incubated in separate microtiter wells coated with monoclonal antibodies which bind Calprotectin. After incubation and washing of the wells, bound Calprotectin is allowed to react with enzyme-labelled, immunoaffinity-purified Calprotectin-specific antibodies. After this reaction, the amount of enzyme bound in the microtiter wells is proportional to the amount of Calprotectin in the sample or standard, which is determined by incubation with a substrate for the enzyme giving a coloured product. The colour intensity is determined by absorbance using an ELISA plate reader and is proportional with the concentration of Calprotectin in the standards and samples. The assay is calibrated using Calprotectin purified from leukocyte extract.

4 MATERIALS

4.1 Reagents and components supplied with the kit

- **MTP** Coated microtiterplate: 12 strips, 8 wells per strip, coated with affinity-purified monoclonal mouse antibodies specific for Calprotectin. The plate is stored in a sealed bag with desiccant.
- DIL 5x Sample Dilution Buffer (5x conc.) ***: 1 x 20 mL, 5x concentrate, to be diluted with distilled/deionised water; pH 8.0 ± 0.2, yellow coloured solution, bottle with blue cap.
- WASH BUF 20x Washing Solution (20x conc.) *: 1 x 50 mL, 20x concentrate, to be diluted with distilled/deionised water, for washing the microtiter wells; pH 7.8 ± 0.2, clear solution, bottle with white cap.
- FEC EXTR BUF 2,5x Faecal Extraction Buffer (2.5x conc.) **: 2 x 90 mL, 2.5x concentrate, to be diluted with distilled/deionised water; pH 8.0 ± 0.2, clear solution, bottles with white caps.
- [CAL |A F] Calprotectin Standards ***: 6 vials with 1.0 mL, ready to use; yellow coloured solution, vials with different coloured caps:

′mL
mL
mL
mL
mL

- CTR LOW CTR HIGH Calprotectin Controls "Low" and "High" ***: 2 vials with 1.0 mL, ready to use; yellow coloured solution; Ctr Low: vial with brown cap;.Ctr High: vial with purple cap.
- **CONJ** Enzyme Conjugate ****: 13 mL alkaline phosphatase-labelled, immunoaffinity-purified polyclonal rabbit antibodies against Calprotectin, ready to use; red coloured solution, 25 mL Dynex reagent tube with white cap.

- **SUB pNPP Enzyme Substrate Solution (pNPP):** 13 mL, ready to use; clear to faint yellow solution, opaque bottle with yellow cap. *Note*: If using a Dynex instrument, the substrate must be transferred into a 25mL Dynex reagent tube before running the test.
- 2 Sealing foils
- 1 Kit insert (Instructions for Use can be found and downloaded on <u>www.calpro.no</u>)
- 1 Plate layout
 - * Contains <0.1 % Kathon
 - ** Contains <0.1% sodium azide
 - *** Contains <0.1 % Kathon and <0.1% sodium azide
 - **** Contains 0.02% methylisothiazolone and 0.02% bromonitrodioxane

4.2 Materials and equipment required but not supplied.

- Distilled/deionised water
- Extraction devices (see section 7.1.1 and 7.1.2)
- Disposable, breakable inoculation loops (if using weighing method in section 7.1.3)
- Sensitive digital scale (40 150 mg) (if using weighing method in section 7.1.3)
- Disposable polystyrene screw cap tubes, 5 mL (if using weighing method in section 7.1.3)
- Vortex mixer
- Disposable tubes for dilution of samples: Eppendorf tubes or similar (if assay is performed manually)
- Pipettes to deliver volumes 10 1000 µL (if assay is performed manually)
- Repetitive pipette or multi-channel pipette, 100 µL (if assay is performed manually)
- Microplate well washer or multi-channel pipette, 300 μL (if assay is performed manually)
- Plate shaker (500 700 rpm) (if assay is performed manually)
- Timer (if assay is performed manually)
- Microplate reader, filter 405 nm (if assay is performed manually)
- 1M NaOH (stop solution; optional)

5 STABILITY AND STORAGE

When stored unopened at 2 - 8°C, kit reagents are stable up to the expiry date stated on the label. Opened plates, reagents and concentrated buffers are stable for up to three months when stored at

2 – 8°C.

When prepared in clean vessels, working solutions (1x) of Washing Solution, Sample Dilution Buffer and Faecal Extraction Buffer can be stored at 2 - 8°C for up to one month. Avoid exposure to high temperature.

6 PREPARATION

All reagents, samples and controls should be brought to room temperature $(18 - 25^{\circ}C)$ before starting the test run.

6.1. Coated microtiter plate strips

The ready-to-use plate strips are coated with affinity-purified monoclonal mouse antibodies specific for Calprotectin. Unused strips should be removed from the frame and immediately re-sealed in the aluminium foil pouch along with the desiccant supplied. Store at $2 - 8^{\circ}$ C.

6.2. Sample Dilution Buffer

Dilute the 5x concentrated Sample Dilution Buffer by adding 1 part (20 mL) to 4 parts (80 mL) distilled/deionised water in a clean vessel to a final volume of 100 mL. Mix well. Store the diluted Sample Dilution Buffer in a closed vessel at $2 - 8^{\circ}$ C.

Note: If using a Dynex DS2 ELISA automat, the Sample Dilution Buffer must be transferred to a 25 mL Dynex reagent tube before running the test.

6.3. Washing Solution

Dilute the 20x concentrated Washing Solution by adding 1 part (50 mL) to 19 parts (950 mL) distilled/deionised water in a clean vessel to a final volume of 1000 mL. Mix well. Store the diluted Washing Solution in a closed vessel at $2 - 8^{\circ}$ C.

6.4. Faecal Extraction Buffer

Dilute the 2.5x concentrated Faecal Extraction Buffer by adding 1 part (90 mL) to 1.5 parts (135 mL) distilled/deionised water in a clean vessel to a final volume of 225 mL. Mix well. Store the diluted buffer in a closed vessel at $2 - 8^{\circ}$ C.

6.5. Standards and controls

The vials labelled with Standard A – F, as well as the controls, contain 1.0 mL each of a ready-to-use solution. The concentration of Calprotectin is printed on the label of each vial. The vials fit directly into Dynex DS2 and DSX ELISA automates.

6.6. Enzyme conjugate

The tube contains 13 mL of alkaline phosphatase (ALP)-labelled, immunoaffinity-purified rabbit antibodies against Calprotectin in a buffer with stabilisers, preservatives and an inert red dye. The solution is ready to use. The tube fits directly into Dynex DS2 ELISA automate.

6.7. Enzyme Substrate Solution (pNPP)

The bottle contains 13 mL of *p*-nitrophenylphosphate (pNPP) solution. The solution is ready to use and must be stored in its original, opaque bottle.

Note: If using a Dynex DS2 ELISA automat, the Enzyme Substrate Solution must be transferred to a 25 mL Dynex reagent tube before running the test.

7 TEST PROCEDURE

7.1 Faecal samples

Since Calprotectin is very stable in stools, patients can collect small faecal samples at home. Collect 1 - 5 g (approximately one teaspoonful), place it in a suitable clean container and deliver it to the laboratory as soon as possible but within five days. When put in a container approved for transport, it can be sent by ordinary mail, i.e. no refrigeration is needed. Exposure to temperatures above 30° C should be avoided.

Samples can also be stored frozen, at -20°C or lower, until delivery or mailing. Frozen samples must be thawed and equilibrated to room temperature before extraction and testing.

Note: Before commencing extraction, the stool sample should be homogenised well using for example a spatula, before the small amount for extraction is taken out.

For extraction we recommend the use of Calpro EasyExtract® or the original weighing method, see chapter 7.1.1 and 7.1.2.

7.1.1 Extraction using the Calpro EasyExtract®

Instructions for use: please read package insert for product No. CAL0510/CAL0510L

(Calpro AS, Product No. CAL0510)

- 7.1.2 Extraction using the weighing method (without extraction device)
 - 1. Weigh (tare) an empty screw cap tube with an inoculation loop.
 - 2. Take out approx. 100 mg (between 40 and 120 mg) faeces by means of the inoculation loop and place it into the screw cap tube. Avoid taking out solid, undigested material like fibres and seeds.
 - 3. Weigh tube and loop with faeces which will give the net faeces weight.
 - 4. Break or cut off the top half of the loop handle and leave the bottom part inside the tube.
 - 5. Add extraction buffer to a weight: volume ratio 1:50, for instance 4.9 mL buffer to 100 mg faeces. Close the tube.
 - 6. Mix vigorously for 30 seconds by means of a vortex mixer.
 - 7. Continue the mixing on a shaker (at approx. 1000 rpm) for 30±5 minutes with the loop inside the tube as an agitator.
 - 8. Allow a couple of minutes on the bench for particles to settle and pipette carefully from the top of the tube. No centrifugation is necessary, but a short centrifugation can be performed if a particle-free solution is required.
 - 9. The extract, which represents a 1:50 dilution (weight:volume) of the stool sample, is now ready for dilution and testing.
 - For storage, transfer about 0.5 mL to a new tube. Extracts can be stored at 2 8°C for at least five days or frozen below -20°C for up to 2 years ⁴⁸.

	1	2	3	4	etc.	
Α	Standard A 0 ng/mL	Standard E 125 ng/mL	Sample 1	Sample 5		
В	Standard A 0 ng/mL	Standard E 125 ng/mL	Sample 1	Sample 5		
С	Standard B 7.8 ng/mL	Standard F 500 ng/mL	Sample 2	Sample 6		
D	Standard B 7.8 ng/mL	Standard F 500 ng/mL	Sample 2	Sample 6		
Е	Standard C 31.3 ng/mL	Control "Low"	Sample 3	Sample 7		
F	Standard C 31.3 ng/mL	Control "Low"	Sample 3	Sample 7		
G	Standard D 62.5 ng/mL	Control "High"	Sample 4	Sample 8		
н	Standard D 62.5 ng/mL	Control "High"	Sample 4	Sample 8		

7.2 Suggested plate layout

Suggested ELISA plate layout for standards, controls and samples using manual procedure. Duplicate wells are recommended for increased reliability of results. A full plate takes 40 samples.

7.3 ELISA procedure

The following procedure is for manual testing. Validated protocols for Dynex DS2 ELISA automate are available upon request. Please note that the standard and positive control vials, as well as the conjugate tube, fit directly into the DS2 ELISA automate.

Procedural Notes

- Preparation: Please read the test protocol carefully *before* performing the assay. Result reliability depends on strict adherence to the test protocol as described. Prior to commencing the assay, a plate layout for all standards, samples and controls should be carefully established, using for example the sheet supplied in the kit. Select the required number of microtiter strips. Unused strips should be re-sealed in the aluminium pouch and stored as described in Section 6.1.
- A 1:100 dilution of faeces extracts is recommended. This dilution will give sample results between 22.2 mg/kg (LoQ) and 2500 mg/kg in faeces. Extracts with higher Calprotectin values can be diluted more (> 1:100) and re-tested if a value is required. Extracts with low Calprotectin values can be diluted less (1:50). The adjusted dilution factor must be taken into account when converting from ng/mL to mg/kg.
- Perform all assay steps in the order given and without any appreciable delays between the steps.
- A clean, disposable pipette tip must be used for dispensing each standard, control, and sample.
- To achieve the most reliable results, standards, controls, and patient samples should always be run in duplicate.

ELISA Procedure

1. Dilute faeces extract samples 1:100 (e.g. 10 μ l sample + 990 μ l Sample Dilution Buffer) and mix well by vortexing.

CALP170

- 2. Add 100 μ l of each standard, control and diluted sample in duplicate wells; see recommended plate layout in Section 8.
- 3. Cover the plate with a sealing foil and incubate at room temperature for 40±5 min on a horizontal plate shaker (approximately 500 700 rpm).
- 4. At the end of the incubation time, remove the liquid and wash the wells by adding 300 μL Washing Solution to each well. Remove as much liquid as possible and repeat until a total of three washings have been performed. If a plate washer is used, check that all aspirating and filling probes are unblocked to ensure efficient washing of all wells. After the final wash, invert the plate and tap the well openings thoroughly on absorbent tissue to remove any remaining Washing Solution.
- 5. Mix the content of the Enzyme Conjugate vial gently prior to use (do not shake). Add 100 µl of conjugate to each well, preferably using a repetitive or multichannel pipette.
- 6. Cover the plate with sealing foil and incubate at room temperature for 40±5 min⁾ on a horizontal plate shaker (approximately 500 700 rpm).
- 7. Repeat the washing steps as described above, three times with 300 µL Washing Solution per well.
- 8. Add 100 μl Enzyme Substrate Solution to each well, preferably using a repetitive or multichannel pipette.
- 9. Incubate the plate at room temperature (without shaking) for 20 30 minutes, protected from light.
- 10. Optional: Add 100 µL 1M NaOH stop solution to each well if a fixed incubation period is required.
- 11. Shake the plate briefly (2-3 seconds) and read the optical density (OD) values at 405 nm using an ELISA reader.

8 QUALITY CONTROL

- A new standard curve must be included in each run.
- The positive controls should be included in each run. The value of the controls should be within the limits printed on the vial labels.
- The OD value of Standard F (500 ng/mL) should be ≥ 1.6 and the OD value of Standard A (0 ng/mL) should be ≤ 0.25. A representative standard curve is shown in figure 1.

9 EVALUATION

Calculation of Calprotectin concentration in patient faecal samples:

- 1. Calculate the mean OD values of all duplicate wells (standards and samples).
- Plot the value of each standard concentration (ng/mL) on the x axis against its mean OD value on the y axis to obtain a standard curve. A 4-parameter curve fit function is recommended (see figure 1 below). If a logarithmic x axis is required, a value of 0.001 ng/mL must be used for standard A (0 ng/mL).
- 3. Use the calibration curve to determine the Calprotectin concentration in the diluted samples (ng/mL) based on their OD values.
- 4. Multiply the Calprotectin concentration (ng/mL) in the diluted faecal extracts by 5 in order to convert to mg/kg Calprotectin in the original stool sample.

This factor corrects for the total dilution of 1:5000 (1:50 during the extraction procedure and the following 1:100 dilution of the extracts) and converts the value from ng/mL to mg/kg.

Example: if a diluted extract sample has a value of 100 ng/mL the concentration in the original stool specimen was $100 \times 5 = 500 \text{ mg/kg}$.

Note: If extracts have been diluted more than the recommended 1:100, the additional dilution factor must be entered into the calculation.

---- Calprotectin std: A=0.086151 B=1.0908 C=146.71 D=2.9173 d =0.0048461 r =0.99998

10 INTERPRETATION OF RESULTS

The following Calprotectin values in stool samples for clinical assessment have been reported in the published literature ^{3, 36, 37}:

Normal value	5 – 50 mg/kg
Positive value	> 50 mg/kg
grey zone*	50-100 mg/kg
Active, symptomatic inflammatory bowel disease	200 – 40,000 mg/kg

*) patients with results within the grey zone are recommended to repeat the test to improve diagnostic accuracy.

Note that a diagnosis should not be established based on a single test result. Diagnosis should take into consideration clinical history and symptoms.

In accordance with scientific literature and published clinical studies^{36, 37}, the following clinical performance for detection of inflammatory bowel disease versus functional disease can be expected:

Cut-off	Sensitivity (95% CI)	Specificity (95 % Cl)	Positive predictive value	Negative predictive value
50 mg/kg	0.90-0.99	0.70-0.77	0.31-0.44	0.98-1.00
100 mg/kg	0.89-0.99	0.84-0.90	0.46-0.62	0.98-1.00

11 SPECIFICATIONS AND PERFORMANCE

<u>Note</u>: All design verification studies were performed by manual testing on faeces extract samples (diluted 1:100)

Precision: The intra and inter precision studies were performed testing the same samples on two different Calprolab kit batches.

Concentration in faeces (mg/kg)	%CV	
29.9	7.3	
166.9	4.4	-
349.2	4.4	
530.9	3.8	
1033.0	7.7	
1634.3	9.8	

Intra-assay (repeatability) precision, faeces extracts (n=20)

Inter-assay (total) precision, faeces extracts (n=80)

Concentration in faeces (mg/kg)	%CV
33.0	14.6
175.1	7.1
375.6	10.1
583.0	6.0
1138.5	14.0
1795.7	9.6

Agreement between extraction methods; weighing method versus EasyExtract® *

Intercept: -6.7, slope: 1.05, R= 0.97

*) Further details and performance data concerning faecal extraction can be found in the packaging insert for EasyExtract® (prod. No. CAL0510).

Recovery:

Faeces: 85 – 105%; tested with faecal extract spiked with purified Calprotectin at five different levels.

Limit of Quantification, Limit of Detection and Limit of Blank:

- Limit of Blank (LoB): 0.54 mg/kg
- Limit of Detection (LoD): 4.36 mg/kg
- Limit of Quantification (LoQ): 22.15 mg/kg

The limit of Quantification, Detection and Blank were performed according to CLSI guideline EP17A-Ed2

Agreement with

a) Phical Test (Eurospital)

Phical Test versus CALP0170: Acceptable correlation and agreement have been found between samples analysed in both assays:

- Intercept: -1.8, (95%CI: -6,6—4.6), slope: 0.94 (95% CI: 0.84-1.03), R = 0.92

b) Calpro Calprotectin ELISA (prod. no. CAL0100)

Calpro Calprotectin ELISA (CAL100) versus CALP0170: Acceptable correlation and agreement have been found between samples analysed in both assays:

- Intercept: 4.3 (95%CI: -0.84 – 14.3), slope: 0.89 (95% CI: 0.85-0.93), R = 0.93

Interference

No observed interference on the ELISA was observed from commonly used pharmaceuticals see list below:

Prednisolone, Imurel, Salazopyrin, Trimetoprim, Cipofloaxcin, Pentasa, Asacol, Ibux, Multivitamin and human Hemoglobin

In addition, S001A12 was tested for possible cross-reactivity and no reactivity was observed.

Measuring range

22.2-2500 mg/kg

Matrix Linearity

-Linear range: 36 to 1755 mg/kg

The matrix linearity study was performed according to CLSI guidelines EP06-Ed2.

12 LIMITATIONS OF THE PROCEDURE

• Diagnosis should not be established based on a single test result. Diagnosis should take into consideration clinical history and symptoms.

13 CONTRAINDICATIONS

- False negative results could occur in patients who have granulocytopenia due to bone marrow suppression
- Patients treated with azathioprine can also have granulocytopenia resulting in false negatives.
- Some patients taking non-steroidal anti-inflammatory drugs (NSAID) will have increased levels of faecal calprotectin.
- Results may not be clinically applicable to children less than 2 years of age, as they often have increased faecal calprotectin levels.
- Other intestinal diseases, including many gastrointestinal infections and colorectal cancer can result in elevated levels of calprotectin.
- Faecal calprotectin is a non-specific indicator of inflammation in the gut. Elevated levels do not
 necessarily mean that the patient has active IBD. The full clinical picture always needs to be
 evaluated.

CALP170

14 PRECAUTIONS AND WARNINGS

- In compliance with article 1 paragraph 2b European directive 98/79/EC the use of the *in vitro* diagnostic medical devices is intended by the manufacturer to secure suitability, performances and safety of the product. Therefore, the test procedure, the information, the precautions and warnings in the instructions for use have to be strictly followed. The use of the test kits with analysers and similar equipment has to be validated. Any change in design, composition and test procedure as well as for any use in combination with other products not approved by the manufacturer is not authorized; the user himself is responsible for such changes. The manufacturer is not liable for any results by visual analysis of the patient samples.
- Only for *in vitro* diagnostic use.
- All components of human origin used for the production of these reagents have been tested for anti-HIV antibodies, anti-HCV antibodies and hepatitis B antigen (Bag) and have been found to be non-reactive. Nevertheless, all materials should be regarded and handled as potentially infectious.
- Do not interchange reagents or strips of different production lots.
- Do not use reagents from other manufacturers with reagents of this test kit.
- Do not use reagents after expiry date stated on the label. Do not use working solutions after 1 months of preparation.
- Use only clean pipette tips, dispensers, and lab ware.
- To prevent cross contamination, do not interchange screw caps of reagent vials.
- Close reagent vials tightly immediately after use to avoid evaporation and microbial contamination.
- After first opening and subsequent storage, check conjugate, standards and control vials for microbial contamination prior to further use.
- To avoid cross-contamination and falsely elevated results, pipette standards, control and faecal extract samples, and dispense conjugate and substrate, <u>accurately</u> to the bottom of microplate wells, without splashing.
- Some reagents contain sodium azide at less than 0.1% (w/v) and/or less than 0.1% Kathon.
- Store the substrate solution in the original, opaque bottle; the solution should be clear to pale yellow. Mix gently before use.
- The CALPROLAB[®] Calprotectin ELISA (ALP) is designed for use by qualified personnel who are trained in good laboratory practice.

15 DISPOSAL CONSIDERATIONS

Residues of chemicals and preparations are generally considered as hazardous waste. The disposal of this kind of waste is regulated through national and regional laws and regulations. Contact your local authorities or waste management companies which will give advice on how to dispose hazardous waste.

16 REFERENCES

- 1. Johne B et al.: Functional and clinical aspects of the myelomonocytic protein calprotectin. J Clin Pathol: Mol Pathol 1997; 50:113-123.
- Fagerhol MK et al.: Calprotectin (The L1 leukocyte protein) in: Smith VL and Dedman JR (eds): Stimulus response coupling: The role of intracellular calcium-binding proteins. CRC Press, Boca Raton 1990, p. 187-210
- 3. Røseth AG et al.: Assessment of the neutrophil dominating protein calprotectin in faeces. Scand J Gastroenterol 1992; 27: 793-798.

CALP170

- 4. Dale I et al.: Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur J Biochem 1983;134: 1-6.
- 5. Dale I et al.: Distribution of a new myelomonocytic antigen (L1) in human peripheral blood leukocytes. American J of Clin Pathology 1985; 84: 24-34
- 6. Brandtzaeg P et al.: Distribution of a formalin-resistant myelomonocytic antigen (L1) in human tissues. II. Normal and aberrant occurrence in various epithelia. American J of Clin Pathology 1987; 87: 700-707.
- 7. Fagerhol MK: Nomenclature for proteins: is calprotectin a proper name for the elusive myelomonocytic protein? J Clin Pathos: Mol Pathos 1996; 49: M74-M79.
- 8. Isaksen B and Fagerhol MK: Calprotectin inhibits matrix metalloproteinases by sequestration of zinc. J Clin Pathol: Mol Pathol 2001; 54: 289-292.
- 9. Steinbakk M et al.: Antimicrobial actions of calcium binding leukocyte L1 protein, calprotectin. Lancet 1990; 336: 763-765.
- 10. Yui S et al.: Induction of apoptotic cell death in mouse lymphoma and human leukaemia cell lines by a calcium-binding protein complex, calprotectin, derived from inflammatory peritoneal exudates cells. Journal of Leukocyte Biology 1995; 58: 650-658.
- Røseth AG et al.: Correlation between faecal excretion of Indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol 1999; 34: 50-54
- 12. Tøn H et al.: Improved assay for fecal calprotectin. Clinica Chimica Acta 2000; 292: 41-54.
- Tibble J et al.: A simple method for assessing intestinal inflammation in Crohn's disease. Gut 2000; 47: 506-513.
- 14. Bunn SK et al.: Fecal calprotectin: Validation as a non-invasive measure of bowel inflammation in childhood inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2001;33: 14-22.
- 15. Bjarnason I and Sherwood R: Fecal calprotectin: A significant step in the noninvasive assessment of intestinal inflammation. J Paediatric Gastroenterology Nut 2001; 33: 11-13
- 16. Siegmund B et al.: [What has been confirmed in the treatment of inflammatory bowel disease?]. Internist 2010;51:1492-1498
- 17. Tibble JA et al.: Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. [Journal Article] Gastroenterology 2000; 119(1):15-22.
- Schnitzler F et al.: Mucosal healing predicts long-term outcome of maintenance therapy with infliximab in Crohn's disease. Inflamm Bowel Dis 2009;15:1295-1301
- 19. Björkesten CG et al.: Endoscopic monitoring of infliximab therapy in Crohn's disease. Inflamm Bowel Dis. 2010, Sep 21
- 20. Røseth AG et al.: Assessment of disease activity in ulcerative colitis by faecal calprotectin, a novel granulocyte marker protein. Digestion 1997; 58:176-80
- 21. Devlin SM and Panaccione R: Evolving inflammatory bowel disease treatment paradigms: top-down versus step-up. Med Clin North Am. 2010;94:1-18
- 22. Pineton de Chambrun G et al.: Clinical implications of mucosal healing for the management of IBD. Nat Rev Gastroenterol Hepatol 2010; 7(1):15-29
- Lichtenstein GR and Rutgeerts P: Importance of mucosal healing in ulcerative colitis. Inflamm Bowel Dis. 2010;16:338-346
- 24. Smith MA et al.: Pharmacogenomics in the treatment of inflammatory bowel disease. Pharmarcogenetics, 2010;11(3):421-437
- 25. Lin MV et al.: What is the optimal therapy for Crohn's disease: step-up or top-down? Expert Rev Gastroenterol Hepatol. 2010;4(2):167-180
- 26. Strauch U and Schölmerich J.: Emerging drugs to treat Crohn's disease. Expert Opin Emerg Drugs, 2010;15(2):309-322
- 27. Isaacs KL: How rapidly should remission be achieved? Dig Dis 2010;28(3):548-555
- 28. Schwartz M and Regueiro M: Prevention and treatment of postoperative Crohn's disease recurrence: an update for a new decade. Curr Gastroenterol Rep. 2011 Feb;13(1):95-100
- 29. Ha C and Kornbluth A: Mucosal healing in inflammatory bowel disease: where do we stand? Curr Gastroenterol Rep. 2010;12(6):471-478.
- 30. Fagerberg UL et al.: Fecal calprotectin: a quantitative marker of colonic inflammation in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;45(4):414-420

CALP170

CALPROLAB is a registered trademark of CALPRO AS, Lysaker, Norway

- 31. Rutgeerts P et al.: Biological therapies for inflammatory bowel diseases. Gastroenterology, 2009;136(5):1182-1197
- 32. Jalocha L et al.: Mucosal healing in Crohn disease. Pol Merkur Lekarski. 2009;26(155):554-555;
- 33. Baert F et al.: Mucosal healing predicts sustained clinical remission in patients with early-stage Crohn's disease. Gastroenterology, 2010;138(2):463-468
- 34. Allez M and Lémann M: Role of endoscopy in predicting the disease course in inflammatory bowel disease. World J Gastroenterol. 2010;16:2626-2632
- 35. Lasson A: Calprotectin in feces a well-documented marker of gastrointestinal inflammation. Indicates disease intensity--normalization of values predicts mucosal healing. Läkartidningen, 2010;107(143):2645-2649
- 36. Kennedy E. Nicholas et. al: Clinical utility and diagnostic accuracy of faecal Calprotectin for IBD at first presentation to gastroenterology services in adults aged 16-50 years. J.Chron's and Colitis (2014)
- 37. Amanda Ricciuto and Anna M. Griffiths: Clinical value of fecal calprotectin. Critical Review in Clinical Laboratory Sciences, 2019 (56): 307-320

17 ORDER INFORMATION

Product code: CALP0170, CALPROLAB® Calprotectin ELISA (ALP) (96 Determinations)

Symbols Key / Symbolschlüssel / Tabela de símbolos			
	Produsert av/Manufactured by / Hergestellt von / Fabricado por / Fabricado por		
IVD	In Vitro Diagnostisk medisinks utsryr/In Vitro Diagnostic Medical Device / In Vitro Diagnosticum /		
LOT	Lot nummer/Lot Number / Chargenbezeichnung / Número de lote		
$\overline{\Sigma}$	Holdbarhetsdato/Expiration Date / Verfallsdatum / Data de Validade		
X	Lagringstemperatur/Storage Temperature / Lagertemperatur / Temperatura de almacenamiento		
(€	CE merke/CE Mark / CE-Zeichen / Marca CE		
REF	Katalognummer/Catalogue Number / Katalog Nummer / Número de Catálogo		
Ĩ	Catalogue Number / Katalog Nummer / Número de Catálogo		
MTP	Mikroplate/Microplate / Mikrotiterplatte / Microplaca		
CONJ	Konjugat/Conjugate / Konjugat / Conjugado		
CAL	Kalibrator A-F/Calibrator A-F / Kalibrator A-F / Calibrador A-F		
CTR LOW	Lav kontroll/Control Low / Kontrolle Niedrig / Control Bajo		
CTRHIGH	Høy kontroll/Control High / Kontrolle Hoch / Control Alto		
DIL 5x	Prøvefortynningsbuffer 5 x konsentrert/Sample diluent buffer 5x concentrated / Probenverdünnungspuffer 5x konzentriert /		
SUB pNPP	pNPP substratløsning/pNPP Substrate solution / pNPP-Substratlösung / Solución substrato pNPP		
FEC EXTR BUF 2,5x	Feces ekstraksjonsbuffer 2.5 x konstetrert/Faecal Extraction Buffer 2,5x concentrated / Stuhlextraktionspuffer 2,5x konzentriert /		
Σ_n	Inneholder nok for n antgall tester/Contains sufficient for "n" tests / Ausreichend für "n" Tests / Contenido suficiente para "n" tests		

Manufactured by:

CALPRO AS

Arnstein Arnebergvei 30 NO-1366 Lysaker Norway

Org no: NO966291281MVA

- Mail@calpro.com
- +47 40 00 42 79
- calpro.no

CALP170

0

Produced within the EU

18 QUICK GUIDE

CALPROLAB® ELISA (ALP) for analysis of Calprotectin in faeces

Please refer to sections 7 – 9 in the package insert for a full description of the practical steps.

Extraction

Perform extraction according to one of the methods described in section 7.1.1 and 7.1.2

ELISA (manual procedure)

- Dilute faecal extracts 1:100 in Sample Dilution Buffer
- Add 100 µL standards, controls and samples to the ELISA plate.
- Incubate on a plate shaker at room temperature for 40±5 min
- Wash the wells three times with 300 µL Washing Solution
- Add 100 μ l of ALP enzyme conjugate to each well
- Incubate on a plate shaker at room temperature for 40±5 min
- Wash the wells three times with 300 µL Washing Solution
- Add 100 μL pNPP Enzyme Substrate Solution to each well.
- Incubate under cover for 20 30 min.
- Optional: add 100 µL 1M NaOH to each well
- Shake the plate for 2-3 seconds and read the OD values at 405 nm using an ELISA reader.
- Using a 4-parameter curve fit, calculate the results (ng/mL)
- \square mg/kg in faeces = ng/mL × 5

For questions, please contact mail@calpro.no